数的加减法计算
海珠龙涛小学----张培汉
一直以为整数加法的运算定律在分数加减法中的应用,学生能够很容易掌握,因此,在课前我让学生举例验证加法的交换律和结合律同样适用于分数。在课上,学生在小组内交流自己的例子。很自然得出结论。在应用的环节中,我让学生举例什么样的分数加减法可以简算。学生也表现的非常好。我心头一喜“看来学生的基础扎实”。新授后完成做一做时,学生们无论是填运算符号,还是填数据都正确,“看来学生们很会迁移”。可在批阅交上的作业时,却发现虽然计算正确,但计算过程并非最简,在解答时还出现了这样的情况:
问题一:没有对计算结果及时约分,导致出现异分母分数相加
问题二:虽然及时对结果进行了约分,但对2/1=2的观念却很淡薄
在讲评作业时,出示12/7+1/5+2/7+1/5集体进行计算,并重点强调:中间计算结果也要及时进行约分。对于“2/1”这样的假分数应化成整数“2”。
1、利用已有知识迁移(类比推理——通过与已知事物的比较提出新猜想、认识新的事物)是学生经常解决问题的一种方法,在学生试做例题时,大部分学生由与“整数加减法简便计算方法”和“小数加减法简便计算方法”的类比,想到了采用简便方法。
2、合作交流是自主探究的空间,它可以进一步拓展自主探究的空间,学生在合作交流中,将获得别人的探究策略和探究成果,修正和完善自主的探究策略和探究结果。在最后让四人小组为单位编算式时,让各位学生自主编题,并发现与他人不同的方法,体现了面向每一位学生的教学理念。在学生展示算式的过程中,又是展示学生解题方法的过程。
3、解放双手。
“听百遍不如手过一遍”,这一节给学生动手的机会是很多的,课本一开始,让学生自己动手做一做,整数和小数加减法的简便计算,从而引入分数加减法的简便计算。对于本节课的新知识,我也采用了让学生自己动手做,整堂课在学生的动手算一算中进行,学生也在他们的动手操作中获得了新知,也充分调动了学生的感知,让学生获得最直接的经验。
本节课是在学生已经掌握同分母分数加减法以及认识了分数的意义和基本性质的基础上教学的,本节课的教学重点不是在异分母分数的计算这一环节,而是重点帮助学生理解和掌握异分母分数加减法的算理,体会算法多样化的价值。因此,我对本课的教材安排进行了改变。
在教学1/2 +1/4时,重点突出沟通新旧知识之间的联系,让学生在数学学习过程中体会转化思想。首先,让学生思考,能像复习题那样直接计算吗?为什么不能?强调分母不同,分数单位就不同,不能直接合并,既然不能你有什么办法找到1/2+1/4的答案呢?在此处学生的思维发生了碰撞,我没有急着给学生以提示,而是让他们在小组中讨论交流,由于学生已经掌握了同分母分数加减法,所以有些小组提出:可以运用学过的有关分数的知识去解决,也有小组提出可以借助一张正方形纸折一折,涂一涂再找到答案,还有的小组根据分数的基本性质去解决。在后来的小组交流中,我让学生充分描述自己的探索过程,再交流计算的方法。在出现多种计算方法后,我引导学生对这些方法进行了优化,使学生充分认识到在计算异分母分数加减法时,先通分再计算是最好的方法。接着我又问:“为什么要通分?”这样的提问可以使学生进一步理解异分母分数加减法的算理,使学生清楚地知道,由于异分母分数的分数单位不同,不能直接计算,只有通过通分转化成同分母分数后才可以直接计算。在这些基础上,让学生比较两种方法有什么共同之处,引导学生发现其具有本质的相同点,即它们都是先通分再计算,由折纸涂色引出异分母分数加法,又以此题让学生提出异分母分数的减法,然后放手让学生独自解决。
通过解决异分母分数的加减法后,引导学生归纳总结“你认为异分母分数加减法可以怎样算呢?”经历了充分的探索和思考后,学生很快总结出:先通分,再按照同分母分数加减法的计算方法进行计算。教师顺势板书:通分、→、转化,并说明:最后要把结果化为最简分数。